The effect of bone morphogenetic protein-2 on rat intervertebral disc cells in vitro.

نویسندگان

  • S Tim Yoon
  • Keun Su Kim
  • Jun Li
  • Jin Soo Park
  • Tomoyuki Akamaru
  • William A Elmer
  • William C Hutton
چکیده

STUDY DESIGN An in vitro experiment to determine the molecular and cellular effect of recombinant human bone morphogenetic protein-2 on cultured rat intervertebral disc cells was performed. OBJECTIVES To determine the effect of recombinant human bone morphogenetic protein-2 on cell proliferation, production of sulfated-glycosaminoglycan, and the expression of genes specific for chondrocytes (Type II collagen, aggrecan, and Sox9) in cultured rat intervertebral disc cells. SUMMARY OF BACKGROUND DATA Intervertebral disc degeneration is associated with cellular and biochemical changes, which include decreased synthesis of cartilage specific gene products such as Type II collagen and aggrecan. Although bone morphogenetic protein-2 is known to induce chondrogenesis during new bone formation, the effects on intervertebral disc cells have not been characterized. METHOD Cells were isolated from the anulus fibrosus and transition zones of lumbar discs from Sprague-Dawley rats. The cells were grown in monolayer and treated with recombinant human bone morphogenetic protein-2 (0, 10, 100, 1000 ng/mL) in Dulbecco's Modified Eagle Medium/F-12 with 1% fetal bovine serum (day 0). On days 2, 4, and 7 after recombinant human bone morphogenetic protein-2 treatment, sulfated-glycosaminoglycan content in the media was quantified using 1,9-dimethylmethylene blue staining. The results were normalized according to culture duration and cell number. On day 7, mRNA was extracted for reverse transcriptase-polymerase chain reaction and real-time polymerase chain reaction to quantitate mRNAs of Type I collagen, Type II collagen, aggrecan, Sox9, osteocalcin, and glyceraldehyde phosphate dehydrogenase. Cell number was determined with a hemocytometer. RESULTS Recombinant human bone morphogenetic protein-2 at 100 and 1000 ng/mL yielded a 17% and 42% increase in cell number on day 4, and a 59% and 79% on day 7, respectively. Recombinant human bone morphogenetic protein-2 at 10 ng/mL had no effect on cell number. Sulfated-glycosaminoglycan increase was greatest at day 7, increasing by 1.3-, 2.1-, and 3.6-fold with recombinant human bone morphogenetic protein-2 treatments of 10, 100, and 1000 ng/mL, respectively. Increases in mRNA levels of Type II collagen, aggrecan, Sox9, and osteocalcin were observed with recombinant human bone morphogenetic protein-2 concentrations of 100 and 1000 ng/mL on day 7 as determined by reverse transcriptase-polymerase chain reaction. No detectable increase in mRNA level of Type I collagen was observed with any levels of recombinant human bone morphogenetic protein-2. Real-time polymerase chain reaction showed the greatest effect at 1000 ng/mL recombinant human bone morphogenetic protein-2, leading to an 11.5-fold increase in aggrecan, a 4.6-fold increase in Type II collagen, a 5.3-fold increase in Sox9, and a 1.9-fold increase in osteocalcin mRNA above untreated controls at day 7. CONCLUSION The results of this study show that recombinant human bone morphogenetic protein-2 enhances disc matrix production and chondrocytic phenotype of intervertebral disc cells. Recombinant human bone morphogenetic protein-2 increases cell proliferation and sulfated-glycosaminoglycan (proteoglycan) synthesis. It increases mRNA of Type II collagen, aggrecan, and Sox9 genes (chondrocyte specific genes), and osteocalcin, but not Type I collagen or glyceraldehyde phosphate dehydrogenase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Treatment with Bone Morphogenetic Protein 4 and Co-culture on Expression of Piwil2 Gene in Mouse Differentiated Embryonic Stem Cells

Background Specific growth factors and feeder layers seem to have important roles in in vitro embryonic stem cells (ESCs) differentiation. In this study,the effects of bone morphogenetic protein 4 (BMP4) and mouse embryonic fibroblasts (MEFs) co-culture system on germ cell differentiation from mouse ESCs were studied. MaterialsAndMethods Cell suspension was prepared from one-day-old embryoid bo...

متن کامل

Bone morphogenetic protein-2 provokes interleukin-18-induced human intervertebral disc degeneration

OBJECTIVES Interleukin 18 (IL-18) is a regulatory cytokine that degrades the disc matrix. Bone morphogenetic protein-2 (BMP-2) stimulates synthesis of the disc extracellular matrix. However, the combined effects of BMP-2 and IL-18 on human intervertebral disc degeneration have not previously been reported. The aim of this study was to investigate the effects of the anabolic cytokine BMP-2 and t...

متن کامل

Bone morphogenetic protein-7 protects human intervertebral disc cells in vitro from apoptosis.

BACKGROUND CONTEXT Disc degeneration includes dysfunction and loss of disc cells leading to a decrease in extracellular matrix (ECM) components. Apoptosis has been identified in degenerated discs. Bone morphogenetic protein-7 (BMP-7) has been reported to stimulate ECM synthesis in the intervertebral disc (IVD), but its effect on disc cell viability is unknown. PURPOSE To investigate whether B...

متن کامل

Changes with age and the effect of recombinant human BMP-2 on proteoglycan and collagen gene expression in rabbit anulus fibrosus cells.

In order to compare the difference between young and old intervertebral disc cells and their responsiveness to recombinant human bone morphogenetic protein-2 (rhBMP-2), disc cells were isolated from the anulus fibrosus (AF) and transition zones of lumbar discs from eight old and eight young New Zealand white rabbits. Compared with the cells from the young rabbits, cells from old rabbits respond...

متن کامل

Adeno-associated virus-mediated BMP-7 and SOX9 in vitro co-transfection of human degenerative intervertebral disc cells.

Bone morphogenetic protein-7 (BMP-7) and SOX9 are important transcription factors in chondrogenesis. In this study, we examined the biological function of the adeno-associated virus (AAV)-mediated BMP-7 and SOX9 double gene in vitro co-transfection of nucleus pulposus cells of human degenerative intervertebral disc. Human intervertebral disc nucleus pulposus cells were cultured in vitro and sub...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Spine

دوره 28 16  شماره 

صفحات  -

تاریخ انتشار 2003